Research Facilities

The Center for Energy and Sustainability research faculty and students have access to state-of-the-art facilities, laboratories and research equipment. Recently, center faculty was awarded $1.7 million through NSF ARI2 to renovate several research labs and more than $2 million through NSF MRI grants for the acquisition of new equipment, including a Scanning Electron Microscope, ICP-MS and an high-payload centrifuge. Lab renovations and equipment acquisition will support the institutionalization of the Center.

  • Environmental Fluid Mechanics and Heat Transfer Laboratory

    Current research interests include (i) Simulation and control of thermal systems; (ii) Soft computing techniques; (iii) System and process optimization; (iv) Heat and fluid flow data analysis; (v) Nonlinear dynamical systems, (vi) Analytical and numberical methods for PDEs; (vii) Micro-scale fluid flow and heat transfer; (iix) Electronic cooling; geophysical flows; (ix) Biologitcal and biologically-inspired systems. 

    Lead Researcher:Dr. Arturo Pacheco-Vega
    Lab Resources:Lab Resources Page

  • Geonvironmental and Water Resources Engineering Lab

    Geoenvironmental and Water Resources Engineering Lab contains state-of-the-art facilities and instrumentation for investigating hydrogeological and transport processes in porous media, and reactive transport phenomena. In particular, research focuses on the use of steady-state centrifugation to investigate such processes in unsaturated low-conductivity soils in the vadose zone. The lab has one of the few Unsaturated flow apparatus (UFA) available in the World and a newly acquired NSF MRI-funded high-payload centrifuge (200lb/arm and 200g).

    Lead Researcher:Dr. Gustavo Borel Menezes
    Lab Resources:Lab Resources Page

  • Gomez Laboratory

    The Gomez group is engaged in developing fundamental and applied research in the area of microfluidics. Specifically, we are focused on developing new microfluidic devices (MDs) for use in point-of-care (POC) diagnostics and chemical and biochemical separations. Some of our current work involves the development of paper microfluidic and bead-based assays, enzyme microreactors, surface plasmon resonance (SPR) on chips, microfluidic fuel cells (methanol, formic acid, and hydrogen), novel materials for microfluidics, and chromatography on chips. We also employ response surface methodology (RSM) and artificial neural networks (ANN) to experimentally optimize conditions in microfluidics. The members of the Gomez group include undergraduate and graduate students, high school students, postdoctoral fellows, and visiting scientists from the fields of chemistry, biochemistry, mechanical engineering, physics, biology, and mathematics.

    Lab Resources:Lab Resources Page

  • Hydrogen Station

    Powered by 100% renewable resources, the station comprises a Hydrogenics electrolyzer, first and second stage compressors capable of fast-filling to 5,000 (350bar) or 10,000 psi (700bar), 60 kg of hydrogen storage, water purification, and various cooling and control systems. Generating up to 60 kg of hydrogen per day to fuel 15-20 vehicles, it is the largest H2 fueling facility in the world operated by an academic institution. The station will provide student training, a unique feature not found anywhere else. The station is located next to the Engineering and Technology building. The station will help to develop educational programs for sustainable engineering and advanced transportation as well as to facilitate research in performance optimization and renewable power smart grid.

    Lead Researcher:Dr. David Blekhman
    Lab Resources:Lab Resources Page

  • Photochemistry Research Laboratory

    Our research is centered around the chemistry of singlet oxygen (1O2), the lowest excited state of the dioxygen molecule. We have been exploring reactions of singlet oxygen with heteroatoms such as phosphorus and sulfur. We are especially interested in mechanistic pathways of such oxidation reactions. Kinetic measurements, trapping experiments and low-temperature observation of reactive intermediates are performed to understand what type of peroxidic intermediates are formed. It is important to understand the nature of such reactive intermediates because they are often better oxidants than dioxygen (in its triplet or singlet state) itself.


    Lead Researcher:Dr. Matthias Selke
    Lab Resources:Lab Resources Page

  • Power, Energy and Transportation Lab

    We are standing in the doorway of the next technical revolution in transportation and renewable energy sectors. Striving for energy independence, electric, hybrid and fuel cell vehicles are making a quantum leap and are strongly positioning themselves in manufacturing and service over the next 20-30 years.

    Wind and solar technologies have reached the development and affordability levels to compete with coal burning. These are the jobs of today and tomorrow, where I see my students taking technology leadership positions.

    California, and especially Southern California, is like none other state in the union. Here is the prime market for new mobile and renewable technologies. The Power, Energy and Transportation program enjoys the support of dozens world wide known Research & Development and manufacturing companies.

    Lead Researcher:Dr. David Blekhman
    Lab Resources:Lab Resources Page

  • Zhou Laboratory

    Currently, research projects performed in Dr. Zhou's lab is comprised of the following areas: (i) Aggregation of Amyloidogenic Proteins; (ii) Electron and Metal Transfer Involving Metallothioneins; (iii) Biological Imaging at the Solution/Solid Interface; (iv) Coupled Analytical Techniques and (v)Nanomaterials and Nanodevices for Enhanced Biosensing

    Lead Researcher:Dr. Feimeng Zhou
    Lab Resources:Lab Resources Page